TECHNOLOGY FOCUS

Lithographically fabricated structures appear in an increasingly wide range of scientific fields, including electrochemistry, biochemistry, biophysics, photonics, and medicine, beyond their traditional niches in electronics. They are enabling a growing array of technical applications, including patterned media, optoelectronic, fluidic, sensing, energy conversion and storage devices, not to mention “internet-of-things” devices. It is therefore necessary to offer opportunities to people interested in alternative lithographic technologies to learn about them and gain expertise, even if they are starting new in the field or are already well versed in lithography.

 

On-Chip and 3D Interconnects
On-Chip and 3D Interconnects

COURSE CONTENT

This course explores the physical and chemical basis of alternative lithography, which in all its essential aspects involves transformations that are designed to print a relief image of an object on a flat surface. The object may be a mold or template or mask containing patterns of devices; the flat surface may be a silicon wafer or flexible polymeric substrate coated with resist, which upon imprinting with the aid of mechanical force (as in the case of imprint resists), or heat treatment or solvent annealing or application of electric field (as in the case of block copolymer resists, colloidal particles, monolayer), or scanning (as in scanning probe resists), or UV exposure (as in stereolithography) is transformed into the relief image of the mask or template. Underlying some of these transformations are distinct chemical reactions that are mediated by electrons, or physical transformations mediated by thermodynamically induced microphase separation and mechanical forces. By drawing on fundamental, theoretical and experimental studies of molecular processes in alternative lithography, including those based on imprint lithography; colloidal particle self-assembly, self-assembling monolayer, and directed block copolymer self-assembly lithography; scanning (proximal) probe lithography based on tunneling microscopy, scanning atomic force microscopy; and stereolithography; we will deconstruct alternative lithography into its essential chemical and physical principles.

On a practical level, the course will provide a full overview of alternative lithographic tool systems, operational principles and theories that underpin the various alternative lithographic techniques; strategies, processes, and materials used in their operations; their unique features, strengths, and limitations; and specific applications to which they are targeted. Also covered in the course are status, technical challenges, scaling, and future trends of alternative lithographic technologies in general.

 

WHO SHOULD ATTEND

This course is intended for scientists and engineers who wish to expand their knowledge of alternative lithographic technologies targeted to applications in scientific fields, including electrochemistry, biochemistry, biophysics, photonics, and medicine, as well as technical fields such as fluidics, sensing, energy conversion and storage, and “internet-of-things.”

On-Chip and 3D Interconnects

DAY 1 – OVERVIEW OF ALTERNATIVE LITHOGRAPHY + IMPRINT LITHOGRAPHY + SELF ASSEMBLY LITHOGRAPHY

Module 1 – Overview of alternative lithographic technologies
             a. Introduction
             b. Why alternative lithography?
             c. International Technology Roadmap for Devices & Semiconductors
             d. Summary

Module 2 – Imprint lithography

1.  Introduction
             a.  Principle

2.  Types
             a. Thermal imprint lithography (T-IL)
             b. UV-imprint lithography (UV-IL)
                   i. Jet and flash UV imprint lithography
             c.  Combined thermal and UV-imprint lithography.
             d. Soft imprint lithography
             e. Reverse imprint lithography
             f.  Substrate conformal imprint lithography
             g. Laser-assisted direct imprint lithography
             h. Electrochemical imprint lithography

3.  Formats
             a. Flat bed format
             b.  Roll-to-roll format

4.  Molds (templates)
             a. Mold materials
                   i. Properties
              b. Mold fabrication
              c.  Mold types
                    i.  2 D molds
                    ii. 3D molds
                    iii. Flexible/soft molds
              d. Mold surface treatment
              e.  Mold lifetime

5. Imprint resist materials
                     i.  Thermoplastic organic polymeric imprint resists
                     ii. Nanoparticle imprint resists
                     iii. Sol-gel imprint resists

6.  Imprint tool
                a.  Modules
                      i.  Imprint module
                      ii.  Substrate (wafer) stage
                      iii.  Overlay alignment module
                      iv.  Measurement module
                      v.  Environmental control module

7.  Physics of the imprint process
                 a. Squeezing flow theory of the imprint process

8.  Critical issues
                 a.  Thickness and uniformity of residual layer
                 b.  Pattern fidelity
                 c. Defect control
                 d. Filling process

9. Select applications
                 a. Patterned media
                        i. Magnetic storage
                        ii. Optical storage
                  b. Photonics
                        i. LEDs
                  c. Plasmonics – plasmonic nanostructures - sharp metallic nanocones
                  d. Optical elements
                         i.  Microlenses, metalenses
                         ii. Diffractive optical elements
                         iii. Optical encoders
                         iv. Waveguides
                         v. Optical fibers
                   e. Microfluidics

10.  Prospects and challenges

11. Summary
                   a. The big picture
                   b. Status & future outlook

 

Module 3 –Self-assembly lithography

1.  Introduction

2.  Types
                    a.  Colloidal particle self-assembly lithography
                    b.  Self-assembled monolayer lithography
                    c. Directed block copolymer self-assembly lithography.

3.  Colloidal particle self-assembly lithography
                    a.  History
                    b.  Process
                    c.  Applications

4.  Self-assembled monolayer lithography
                     a.  History
                     b.  Process
                     c.  Applications

5. Directed block copolymer self-assembly lithography
                     a.  History
                     b.  Materials
                     c.  Physics of microphase separation
                     d.  Process
                             i. Graphoepitaxy
                             ii.  Chemoepitaxy
                      e.  Applications
                      f.  Prospects and challenges

6. Summary
                     a. The big picture
                     b. Status & outlook

 

DAY 2 – SCANNING PROBE LITHOGRAPHY + STEREO LITHOGRAPHY + INTERFERENCE LITHOGRAPHY

Module 4 –Scanning Probe lithography

1.  Introduction
                     a. History
                     b.  Types
                            i.  Scanning tunnelling microscope lithography
                            ii. Scanning atomic force microscope lithography
                            iii. Dip pen lithography

2. Scanning tunnelling microscope lithography

                      a.  Operational principle
                      b.  Patterning methods
                             i. Resist exposure
                             ii. Material removal and etching
                             iii. Anodic oxidation
                             iv.  Field induced evaporation
                             v.  Material deposition
                             vi.  Manipulation of single atoms and molecules
                      c.  Select applications.                 

3. Atomic force microscope lithography
                      a.  Operational principle
                      b.  Patterning methods
                               i. Resist exposure
                               ii. Indentation, plowing, & etching
                               iii. Oxidation
                               iv.  Material deposition
                               vi.  Manipulation of single atoms and molecules
                       c.  Select applications.

4. Dip pen lithography
                      1.  Introduction
                               a.  History

                      2.  Operational principle
                      3.  Materials
                      4. Select applications
                      5. Summary
                               a. The big picture
                               b. Status & outlook

Module 5 –Stereo lithography
1.  Introduction
                     a. History

2.  Operational principle

3.  Materials

4.  Select applications

5. Summary
                    a. The big picture
                    b. Status & outlook

  

Module 6 –interference lithography

1.  Introduction
                    a.  History
                    b. Types
                              i. Laser interference lithography
                              ii. Extreme ultraviolet interference lithography

2.  Theory

3. Instrumentation
                    a. UV laser based systems.
                              i.  Instrumentation architecture
                              i.1. Llyod’s mirror interferometer
                              i.2. Dual beam interferometer
                              ii.  Requirements on beam size and shape
                              b. Extreme ultraviolet light-based system.

4.  Photoresist exposure
                      a.  Reflections and standing waves
                      b.  Anti-reflection coating & reflectivity control
                      c.  Selection of photoresist
                               i.  Positive or negative resist?

                      d. Multiple exposure

5.  Select applications
                      a. Nanophotonics – wiregrid polarizers, diffraction gratings, waveguide couplers
                      b.  Nanoimprint stamps/template fabrication
                      c.  Fresnel zone plates fabrication
                      d.  Chemical patterning of self-assembled monolayers for other uses
                      e.  Radiation grafting of polymer nanostructures.

6. Summary
                     a. The big picture
                     b. Status & outlook