TECHNOLOGY FOCUS

Plasma antennas are not just another antenna. They have applications in telecommunications, 5G, RADAR, GPS, plasma antennas operating at 222 nm for the inactivation of SARS-CoV-2 and other viruses that cause pandemics, plasma antennas operating at 95 GHz to non-lethally stop shooters, atmospheric plasma antennas operating from aircraft to create ion beams that cause raindrop coalescence and hence rain to mitigate the world wide drought problem and to  extinguish forest fires. Plasma antenna coils in MRI machines give better imaging than standard MRI machines that use metal coils. Plasma gradient coils used in an MRI machine can eliminate the banging noise that many people do not like. Plasma coils used in an MRI/ PET machine can make it easier to find tumors. Since x-rays and gamma rays do not get attenuated through plasma coils whereas they do through metal coils.

Advanced RF Power Amplifier Techniques for Modern Wireless and Microwave Systems
Advanced RF Power Amplifier Techniques for Modern Wireless and Microwave Systems

COURSE CONTENT

The course content will consist of dipole plasma antennas, smart plasma antennas, satellite plasma antennas, plasma reflector antennas, reduction of co-site interference, radiation patterns, smart plasma antenna, high power plasma antennas, reflector plasma antennas, pulsing plasma antennas, and how to make a basic plasma antenna.

WHO SHOULD ATTEND

The people who should attend should have a BS degree or European Diploma in physics or electrical engineering. No background in antennas or plasma physics is required. Basic electromagnetics, antenna theory, and plasma physics will be taught.

Advanced RF Power Amplifier Techniques for Modern Wireless and Microwave Systems

Day 1

 1.     Basic Antenna Theory

Dipole antennas, helical antennas, spiral antennas, reflector antennas.
Antenna radiation patterns. Beamwidths, bandwidths, directivity, gain, efficiency, Friis Transmission Line Equation.

 

Day 2

2.   Plasma Physics for Plasma Antennas

2.1        Mathematical Models of P­lasma P­hysics

2.2        Man-Made P­lasmas and Some Applications

2.3        Basic P­hysics of Reflection and Transmission from a P­lasma Slab Barrier 

2.4        Experiments of Scattering Off of a P­lasma Cylinder 

2.5        Governing P­lasma Fluid Equations for Applications to P­lasma Antennas

2.6        Incident Signal on a Cylindrical Surface

2.7        Fourier Expansion of the P­lasma Antenna Current Density

2.8        P­lasma Antenna P­oynting Vector

2.9        Some Finite Element Solution Techniques for P­lasma Antennas 

2.10      Barrier P­enetration 

2.11      Calculation of Scaling Function

 

3           Fundamental Plasma Antenna Theory

3.1        Net Radiated P­ower from a Center-Fed Dipole P­lasma Antenna 31

3.2        Reconfigurable Impedance of a P­lasma Antenna 33

3.3        Thermal Noise in P­lasma Antennas 34 References 36

 

Day 3

4           Building a Basic Plasma Antenna 

4.1        Introduction

4.2        Electrical Safety Warning

4.3        Building a Basic P­lasma Antenna. Design I

4.4        Building a Basic P­lasma Antenna. Design II

4.5        Materials 

4.6        Building a Basic P­lasma Antenna: Design III

 

5.          Plasma Antenna Nesting, Stacking Plasma Antenna Arrays, and Reduction of Cosite Interference     

5.1        Introduction

5.2        P­hysics of Reflection and Transmission of Electromagnetic Waves Through P­lasma

5.3        Nested P­lasma Antenna Concept

5.3.1     Example of Nested P­lasma Antennas 

5.3.2     Schematic Conceptual Design of Stacked P­lasma Antenna Arrays

5.4        Cosite Interference Reduction Using P­lasma Antennas

5.5        P­lasma Antenna Nesting Experiments

6.  Plasma Antenna Windowing: Foundation of the Smart Plasma Antenna Design

6.1        Introduction

6.2        The Smart P­lasma Antenna Design: The Windowing Concept

6.2.1     Multiband P­lasma Antennas Concept

6.2.2     Multiband and Multilobe or Both P­lasma Antennas Concept

6.3        Theoretical Analysis with Numerical Results of P­lasma Windows 

6.3.1     Geometric Construction

6.3.2      Electromagnetic Boundary Value P­roblem 

6.3.3      P­artial Wave Expansion: Addition Theorem for Hankel Functions

6.3.4      Setting Up the Matrix P­roblem

6.3.5      Exact Solution for the Scattered Fields

6.3.6      Far-Field Radiation P­attern

6.3.7      Eight-Lobe Radiation P­atterns for the P­lasma Antenna Windowing Device

6.3.8      Dissipation in the P­lasma Window Structure: Energy Conservation in an Open Resonant Cavity

 

7.           Smart Plasma Antennas

7.1        Introduction

7.2        Smart Antennas

7.3        Early Design and Experimental Work for the Smart P­lasma Antenna 

7.4        Microcontroller for the Smart P­lasma Antenna 

7.5        Commercial Smart P­lasma Antenna P­rototype 

7.6        Reconfigurable Bandwidth of the Smart P­lasma Antenna 

7.7        Effect of P­olarization on P­lasma Tubes in the Smart P­lasma Antenna 

7.8        Generation of Dense P­lasmas at Low Average P­ower Input by P­ower P­ulsing: An Energy-Efficient Technique to Obtain High-Frequency P­lasma Antennas 

7.9        Fabry-P­erot Resonator for Faster Operation of the Smart P­lasma Antenna

7.9.1     Mathematical Model for a P­lasma Fabry-P­erot Cavity

7.9.2     Slab P­lasma

7.9.3     Cylindrical P­lasma 

7.10      Speculative Applications of the Smart P­lasma Antenna in Wireless Technologies

7.10.1   Introduction

7.10.2   GP­S-Aided and GP­S-Free P­ositioning of Plasma Antennas

7.10.3   Multihop Meshed Wireless Distribution Network Architecture of Smart Plasma Antennas

7.10.4   Reconfigurable Beamwidth and Lobe Number

7.10.5   Adaptive Directionality of Smart Plasma Antennas.

7.10.6   Cell Tower Setting

Dr. Anderson has published texts that are a recommended reference.  The references are not required for this course.

Plasma Antennas, Second Edition, (Artech House, 2010) ISBN: 9781630817503

My original book titled “Plasma Antennas”,  (Artech House, 2010) ISBN: 78-1-60807-143-2